Sélection internationale École Normale Supérieure

Paris Durée : 4 heures

Session 2010

Epreuve de culture scientifique - Informatique

Exercise 1.

1. Soit L un langage reconnaissable en temps polynomial : *i.e.* il existe un algorithme \mathcal{A} et une constante r tels que pour tout mot w, l'algorithme traite w en temps $O(|w|^r)$ et $w \in L$ si l'algorithme retourne "oui" et $w \notin L$ si l'algorithme retourne "non".

Montrer qu'il existe un algorithme polynomial qui reconnait L^* et donner son temps d'exécution en fonction de |w| et r.

- 2. Soit un mot w = xy avec |x| = |y|. Pour un tel mot, nous définissons $\mathsf{permute}(w) = yx$. Pour simplifier, nous définissons $\mathsf{permute}(w) = \varepsilon$ si |w| est impair. Si L est un langage, nous définissons $\mathsf{permute}(L) = \{\mathsf{permute}(w) | w \in L\}$.
 - (a) Montrer que si L est régulier, alors permute(L) n'est pas nécessairement régulier.
 - (b) Montrer que si L est régulier, alors permute(L) est algébrique.
 - (c) Montrer que si L est algébrique, alors permute(L) n'est pas nécessairement algébrique.

Exercise 2. La logique de Hoare manipulate des triplets. Un triplet $\{P\}$ C $\{Q\}$ décrit les conséquences Q de l'exécution de la ligne de code C, à condition que la propriété P soit vérifiée avant cette exécution. Par exemple, il est clair que le triplet $\{y=2\}$ x:=y $\{x=2\}$ est valide. La logique de Hoare fournit ces règles pour chacune des construction d'un langage impératif simple 1 :

$\boxed{ \texttt{L1}_{\overline{\{P[E/x]\}} \ x:=E \ \{P\}} }$	$ \begin{array}{c c} & & \\ \hline \text{L2} & & \\ \hline \{P\} & S;T & \{R\} \end{array} $
$\boxed{\text{L3}} \frac{P' \Rightarrow P , \{P\} \ S \ \{Q\} , \ Q \Rightarrow \ Q'}{\{P' \ \} \ S \ \{Q'\}}$	

Voici un exemple de l'utilisation de la logique de Hoare pour prouver le triplet $\{x>0\}x:=x+1; x:=x+1\{x>2\}$:

¹La construction $\frac{A}{B}$ signifie que si A est valide alors B l'est aussi, et la construction P[E/x] représente l'élément P modifié de telle sorte que chaque occurrence de x dans P a été remplacée par l'expression E

1. Que fait le programme suivant, pour lequel n est supposé initialisé à une valeur entière strictement positive ?

```
y := 1 ;
i := n ;
while i > 1 do
y := y * i ;
i := i - 1 ;
done
```

- 2. Prouver ce comportement de la même manière que dans l'exemple cité plus haut (c'est à dire en utilisant un arbre dont chaque branchement correspond à une règle parmi L1, L2, L3 et L4).
- 3. Prouver que le triplet $\{n\geq 0\}$ C $\{z=n^3\}$ est valide, où C est le programme suivant :

```
x :=0;
y :=0;
z :=0;
while not (x=n) do
z :=z+3y+3x+1;
y :=y+2x+1;
x :=x+1
done
```

4. Proposer une règle [L5], similaire à [L1], [L2], [L3], [L4] pour la construction usuelle if B then S else T, où B est une condition booléenne and S and T sont des propriétés.

Exercise 3. (Exercice pour les candidats de la discipline secondaire)

Soit A un anneau commutatif unitaire.

PARTIE I : DIVISION EUCLIDIENNE RAPIDE PAR LA MÉTHODE DE NEWTON Soient $S,T\in A[X]$ avec $\deg(S)=n,\,\deg(T)=m$ et T unitaire.

- 1. Montrer que l'algorithme classique de division euclienne de S par T a une complexité arithmétique en $O(n^2)$.
- 2. Pour $P \in A[X]$ et $k \ge \deg(P)$, nous notons $\operatorname{Rec}_k(P(X)) = X^k P(1/X)$. Montrer que

$$Rec_{n-m}(Q) = Rec_n(S)Rec_m(T)^{-1} \mod X^{n-m+1}$$

où Q est le quotient de la division euclidienne de S par T.

3. Soit $F \in A[X]$ avec F(0) = 1. Considérons la suite de polynômes $G_i \in A[X]$ définie par $G_0 = 1$ et

$$G_{i+1} = 2G_i - F \cdot G_i^2 \mod X^{2^{i+1}}$$

pour $i \ge 0$. Montrer que pour tour entier $i \ge 0$, nous avons

$$F \cdot G_i \equiv 1 \mod X^{2^i}$$
.

- 4. En déduire un algorithme pour calculer Q et le reste R de la division euclidienne de S par T.
- 5. Montrer que la complexité arithmétique de ce nouvel algorithme de division euclidienne appliqué à deux polynômes de degré < n est en O(M(n)) où M(n) est la complexité arithmétique du produit de deux polynômes de degré < n de A[X] (avec $M(n+m) \ge M(n) + M(m)$ pour $m, n \in \mathbb{N}$).

PARTIE II : ÉVALUATION RAPIDE DE POLYNÔMES Soit $P \in A[X]$ unitaire avec $\deg(P) = n$. Soient $a_1, \ldots, a_n \in A$.

- 1. Supposons que $n=2^k$ est une puissance de 2 et considérons un l'arbre binaire complet T à n feuilles défini par :
 - chacune des n feuilles est associée à un polynôme $X-a_j$ pour $j\in\{1,\ldots,n\}$;
 - pour chaque nœud interne u ayant les fils v et w associés aux polynômes $M_v(X)$ et $M_w(X)$ respectivement, u est associé au polynôme $M_u(X) = M_v(X) \cdot M_w(X)$.
 - (a) Donner un algorithme pour construire l'arbre T avec une complexité arithmétique en $O(M(n)\log n)$.
 - (b) Donner un algorithme qui prenant en entrée P, (a_1, \ldots, a_n) et T, calcule P(X) mod $M_u(X)$ pour tout $u \in T$, avec une complexité arithmétique en $O(M(n) \log n)$.
- 2. Déduire des questions précédentes un algorithme qui calcule $P(a_1), \ldots, P(a_n)$ pour tout $n \in \mathbb{N}$ avec une complexité arithmétique en $O(M(n) \log n)$.